

DEPARTMENT OF MECHACNICAL ENGINEERING

MECHANICS OF MACHINES LAB

INTRODUCTION: The objective of this lab to impart practical knowledge on design and analysis of mechanisms for the specified type of motion in a machine. With the study of rigid bodies motions and forces for the transmission systems, machine kinematics and dynamics can be understood. Demonstration exercises are provided with wide varieties of transmission element models to understand machine kinematics. Experiment with governors, gyroscopes, balancing machines, and universal vibration facilities are available to understand machine dynamics.

COURSE EDUCATIONAL OBJECTIVE: The objective of this course is to demonstrate

the concepts of mechanics of machines and mechanical vibrations.

COURSE OUTCOMES: At the end of the course, student will be able to

CO1. Apply the dynamics of cams, gyroscopes to any practical problems.

CO2. Evaluate the speed regulations in governors.

CO3. Analyze the effects of vibrations.

CO4. Analyze the moving parts (rotating and reciprocating) for dynamic and static balance.

Lab Layout:

Fig 1: Lab Layout

S.No	Name of the Equipment	Date of	Qty	Rate	Amount
		Purchase			
1.	Whirling Speed of the Shaft	26-11-2012	1	49,157/-	
	Apparatus				
2.	Motorized Gyroscope Apparatus	26-11-2012	1	52,900/-	
3.	Cam Jump Apparatus	26-11-2012	1	60,000/-	2 00 410/
4.	Porter/Proel/Hartnell Governor	26-11-2012	1	64,000/-	2,99,419/-
	Apparatus				
5.	Balancing of Rotating Masses	26-11-2012	1	64,500/-	
	Apparatus				
6.	Spring Mass System apparatus	01-03-2013	1	18,000/-	
7.	Transverse Vibration Apparatus	01-03-2013	1	67,500/-	
8.	Balancing of Reciprocating	01-03-2013	1	65,000/-	
	Masses Apparatus				
9.	Gear Reducers Test Rig.	01-03-2013	1	45,000/-	
10.	Models: Inversions of Four Bar				2 22 073/-
	Mechanism, Single and Double	01-03-2013	2	10,000/-	2,22,075/
	Slider Crank Mechanisms				
11.	Models: Gear Trains – Simple,				
	Compound, Reverted,	01-03-2013	6	10,000/-	
	Epicyclical and Differential,				
	Kinematics of Universal Joint.				
				Total Cost	5,21,492/-

Equipment Details in Mechanics of Machines Laboratory

Mechanics of Machines Lab Photographs:

Fig 2: Lab Entrance

Fig 3: Lab View

Fig 4: Whirling Speed of Shaft

Specifications: Whirling Speed of Shaft

Specifications	units	Diameter of shafts	Mass of the shaft
	1m	4mm	0.13kg
Length of shaft		5mm	0.20kg
		6mm	0.30kg
Motor Capacity	0.5HP,180V,50HZ,1500RPM		

Fig 5: Longitudinal vibration on spring mass system

Specifications: Longitudinal vibration on spring mass system

Specifications		
Mass of Weight Pan	0.5kg/4.90N	
Length of Spring	0.43m	
Dead Weights	250 grams, 500grams,	

Fig 6: Torsional vibration on single rotor system

Specifications: Torsional vibration on single rotor system

Specifications		
Diameter of the shaft	3x10 ⁻³ m	
Length of the shaft	1m	
Diameter of disc	200x10 ⁻³	
Mass of the disc	5kg	
Modulus of rigidity	$80x10^9 \text{ N/m}^2$	

Fig 7: Motorised Gyroscope

Specifications: Motorised Gyroscope

Specifications		
Weight of Disc	2.70 kg	
Diameter of disc	210m	
Disc Thickness	10mm	
Disc between centre of		
disc and centre of	196mm	
weight stud		
Density of disc	7820 kg/m^3	
Dead weights	250grams,500 grams	

Laboratory Utilization:

S.No	Laboratory Name	Branch
1	Engineering Mechanics lab	Mechanical, Aerospace II- Semester
2	Dynamics lab	Mechanical V Semester
3	Air craft's Structures lab	Aerospace VI- Semester
4	Mini Projects	Mechanical, Aerospace VI Semester
5	Major projects	Mechanical, Aerospace VIII Semester
6	Project based Lab Experiments	Mechanical, Aerospace III, IV Semester

Lab In charge: Mr. B. Sudheer Kumar M.Tech., (Ph.D)

Technician: Mr. A. D. Mallikarjuna Rao